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Prologue: You Are What You Have Read

Late one Friday night in early November, Jun Rekimoto, a distinguished professor of
human-computer interaction at the University of Tokyo, was online preparing for a
lecture when he began to notice some peculiar posts rolling in on social media.
Apparently Google Translate, the company’s popular machine-translation service, had
suddenly and almost immeasurably improved. Rekimoto visited Translate himself and
began to experiment with it. He was astonished. He had to go to sleep, but Translate
refused to relax its grip on his imagination.

Rekimoto wrote up his initial findings in a blog post. First, he compared a few sentences
from two published versions of “The Great Gatsby,” Takashi Nozaki’s 1957 translation
and Haruki Murakami’s more recent iteration, with what this new Google Translate was
able to produce. Murakami’s translation is written “in very polished Japanese,”
Rekimoto explained to me later via email, but the prose is distinctively “Murakami-
style.” By contrast, Google’s translation — despite some “small unnaturalness” — reads
to him as “more transparent.”

The second half of Rekimoto’s post examined the service in the other direction, from
Japanese to English. He dashed off his own Japanese interpretation of the opening to
Hemingway’s “The Snows of Kilimanjaro,” then ran that passage back through Google
into English. He published this version alongside Hemingway’s original, and proceeded
to invite his readers to guess which was the work of a machine.

NO. 1:

Kilimanjaro is a snow-covered mountain 19,710 feet high, and is said to be
the highest mountain in Africa. Its western summit is called the Masai
“Ngaje Ngai,” the House of God. Close to the western summit there is the
dried and frozen carcass of a leopard. No one has explained what the
leopard was seeking at that altitude.



NO. 2:

Kilimanjaro is a mountain of 19,710 feet covered with snow and is said to
be the highest mountain in Africa. The summit of the west is called “Ngaje
Ngai” in Masai, the house of God. Near the top of the west there is a dry
and frozen dead body of leopard. No one has ever explained what leopard
wanted at that altitude.

Even to a native English speaker, the missing article on the leopard is the only real
giveaway that No. 2 was the output of an automaton. Their closeness was a source of
wonder to Rekimoto, who was well acquainted with the capabilities of the previous
service. Only 24 hours earlier, Google would have translated the same Japanese passage
as follows:

Kilimanjaro is 19,710 feet of the mountain covered with snow, and it is said
that the highest mountain in Africa. Top of the west, “Ngaje Ngai” in the
Maasai language, has been referred to as the house of God. The top close
to the west, there is a dry, frozen carcass of a leopard. Whether the leopard
had what the demand at that altitude, there is no that nobody explained.

Rekimoto promoted his discovery to his hundred thousand or so followers on Twitter,
and over the next few hours thousands of people broadcast their own experiments with
the machine-translation service. Some were successful, others meant mostly for comic
effect. As dawn broke over Tokyo, Google Translate was the No. 1 trend on Japanese
Twitter, just above some cult anime series and the long-awaited new single from a girl-
idol supergroup. Everybody wondered: How had Google Translate become so uncannily
artful?

Four days later, a couple of hundred journalists, entrepreneurs and advertisers from
all over the world gathered in Google’s London engineering office for a special
announcement. Guests were greeted with Translate-branded fortune cookies. Their
paper slips had a foreign phrase on one side — mine was in Norwegian — and on the
other, an invitation to download the Translate app. Tables were set with trays of
doughnuts and smoothies, each labeled with a placard that advertised its flavor in
German (zitrone), Portuguese (baunilha) or Spanish (manzana). After a while, everyone
was ushered into a plush, dark theater.



Sundar Pichai, chief executive of Google, outside his office in Mountain View, Calif.CreditBrian Finke
for The New York Times

Sadiq Khan, the mayor of London, stood to make a few opening remarks. A friend, he
began, had recently told him he reminded him of Google. “Why, because I know all the
answers?” the mayor asked. “No,” the friend replied, “because you’re always trying to
finish my sentences.” The crowd tittered politely. Khan concluded by introducing
Google’s chief executive, Sundar Pichai, who took the stage.

Pichai was in London in part to inaugurate Google’s new building there, the cornerstone
of a new “knowledge quarter” under construction at King’s Cross, and in part to unveil
the completion of the initial phase of a company transformation he announced last year.
The Google of the future, Pichai had said on several occasions, was going to be “A.I.



first.” What that meant in theory was complicated and had welcomed much speculation.
What it meant in practice, with any luck, was that soon the company’s products would
no longer represent the fruits of traditional computer programming, exactly, but
“machine learning.”

A rarefied department within the company, Google Brain, was founded five years ago on
this very principle: that artificial “neural networks” that acquaint themselves with the
world via trial and error, as toddlers do, might in turn develop something like human
flexibility. This notion is not new — a version of it dates to the earliest stages of modern
computing, in the 1940s — but for much of its history most computer scientists saw it as
vaguely disreputable, even mystical. Since 2011, though, Google Brain has demonstrated
that this approach to artificial intelligence could solve many problems that confounded
decades of conventional efforts. Speech recognition didn’t work very well until Brain
undertook an effort to revamp it; the application of machine learning made its
performance on Google’s mobile platform, Android, almost as good as human
transcription. The same was true of image recognition. Less than a year ago, Brain for
the first time commenced with the gut renovation of an entire consumer product, and its
momentous results were being celebrated tonight.

Translate made its debut in 2006 and since then has become one of Google’s most
reliable and popular assets; it serves more than 500 million monthly users in need of
140 billion words per day in a different language. It exists not only as its own stand-
alone app but also as an integrated feature within Gmail, Chrome and many other
Google offerings, where we take it as a push-button given — a frictionless, natural part
of our digital commerce. It was only with the refugee crisis, Pichai explained from the
lectern, that the company came to reckon with Translate’s geopolitical importance: On
the screen behind him appeared a graph whose steep curve indicated a recent fivefold
increase in translations between Arabic and German. (It was also close to Pichai’s own
heart. He grew up in India, a land divided by dozens of languages.) The team had been
steadily adding new languages and features, but gains in quality over the last four years
had slowed considerably.

Until today. As of the previous weekend, Translate had been converted to an A.I.-based
system for much of its traffic, not just in the United States but in Europe and Asia as
well: The rollout included translations between English and Spanish, French,
Portuguese, German, Chinese, Japanese, Korean and Turkish. The rest of Translate’s
hundred-odd languages were to come, with the aim of eight per month, by the end of
next year. The new incarnation, to the pleasant surprise of Google’s own engineers, had
been completed in only nine months. The A.I. system had demonstrated overnight
improvements roughly equal to the total gains the old one had accrued over its entire
lifetime.

Pichai has an affection for the obscure literary reference; he told me a month earlier, in
his office in Mountain View, Calif., that Translate in part exists because not everyone
can be like the physicist Robert Oppenheimer, who learned Sanskrit to read the
Bhagavad Gita in the original. In London, the slide on the monitors behind him flicked
to a Borges quote: “Uno no es lo que es por lo que escribe, sino por lo que ha leido.”



Grinning, Pichai read aloud an awkward English version of the sentence that had been
rendered by the old Translate system: “One is not what is for what he writes, but for
what he has read.”

To the right of that was a new A.I.-rendered version: “You are not what you write, but
what you have read.”

It was a fitting remark: The new Google Translate was run on the first machines that
had, in a sense, ever learned to read anything at all.

Google’s decision to reorganize itself around A.I. was the first major manifestation of
what has become an industrywide machine-learning delirium. Over the past four years,
six companies in particular — Google, Facebook, Apple, Amazon, Microsoft and the
Chinese firm Baidu — have touched off an arms race for A.IL. talent, particularly within
universities. Corporate promises of resources and freedom have thinned out top
academic departments. It has become widely known in Silicon Valley that Mark
Zuckerberg, chief executive of Facebook, personally oversees, with phone calls and
video-chat blandishments, his company’s overtures to the most desirable graduate
students. Starting salaries of seven figures are not unheard-of. Attendance at the field’s
most important academic conference has nearly quadrupled. What is at stake is not just
one more piecemeal innovation but control over what very well could represent an
entirely new computational platform: pervasive, ambient artificial intelligence.

The phrase “artificial intelligence” is invoked as if its meaning were self-evident, but it
has always been a source of confusion and controversy. Imagine if you went back to the
1970s, stopped someone on the street, pulled out a smartphone and showed her Google
Maps. Once you managed to convince her you weren’t some oddly dressed wizard, and
that what you withdrew from your pocket wasn’t a black-arts amulet but merely a tiny
computer more powerful than that onboard the Apollo shuttle, Google Maps would
almost certainly seem to her a persuasive example of “artificial intelligence.” In a very
real sense, it is. It can do things any map-literate human can manage, like get you from
your hotel to the airport — though it can do so much more quickly and reliably. It can
also do things that humans simply and obviously cannot: It can evaluate the traffic, plan
the best route and reorient itself when you take the wrong exit.

Practically nobody today, however, would bestow upon Google Maps the honorific
“A.L.,” so sentimental and sparing are we in our use of the word “intelligence.” Artificial
intelligence, we believe, must be something that distinguishes HAL from whatever it is a
loom or wheelbarrow can do. The minute we can automate a task, we downgrade the
relevant skill involved to one of mere mechanism. Today Google Maps seems, in the
pejorative sense of the term, robotic: It simply accepts an explicit demand (the need to
get from one place to another) and tries to satisfy that demand as efficiently as possible.
The goal posts for “artificial intelligence” are thus constantly receding.

When he has an opportunity to make careful distinctions, Pichai differentiates between
the current applications of A.I. and the ultimate goal of “artificial general intelligence.”
Artificial general intelligence will not involve dutiful adherence to explicit instructions,
but instead will demonstrate a facility with the implicit, the interpretive. It will be a



general tool, designed for general purposes in a general context. Pichai believes his
company’s future depends on something like this. Imagine if you could tell Google
Maps, “I’d like to go to the airport, but I need to stop off on the way to buy a present for
my nephew.” A more generally intelligent version of that service — a ubiquitous
assistant, of the sort that Scarlett Johansson memorably disembodied three years ago in
the Spike Jonze film “Her”— would know all sorts of things that, say, a close friend or an
earnest intern might know: your nephew’s age, and how much you ordinarily like to
spend on gifts for children, and where to find an open store. But a truly intelligent Maps
could also conceivably know all sorts of things a close friend wouldn’t, like what has only
recently come into fashion among preschoolers in your nephew’s school — or more
important, what its users actually want. If an intelligent machine were able to discern
some intricate if murky regularity in data about what we have done in the past, it might
be able to extrapolate about our subsequent desires, even if we don’t entirely know them
ourselves.

The new wave of A.I.-enhanced assistants — Apple’s Siri, Facebook’s M, Amazon’s Echo
— are all creatures of machine learning, built with similar intentions. The corporate
dreams for machine learning, however, aren’t exhausted by the goal of consumer
clairvoyance. A medical-imaging subsidiary of Samsung announced this year that its
new ultrasound devices could detect breast cancer. Management consultants are falling
all over themselves to prep executives for the widening industrial applications of
computers that program themselves. DeepMind, a 2014 Google acquisition, defeated the
reigning human grandmaster of the ancient board game Go, despite predictions that
such an achievement would take another 10 years.

In a famous 1950 essay, Alan Turing proposed a test for an artificial general intelligence:
a computer that could, over the course of five minutes of text exchange, successfully
deceive a real human interlocutor. Once a machine can translate fluently between two
natural languages, the foundation has been laid for a machine that might one day
“understand” human language well enough to engage in plausible conversation. Google
Brain’s members, who pushed and helped oversee the Translate project, believe that
such a machine would be on its way to serving as a generally intelligent all-
encompassing personal digital assistant.

What follows here is the story of how a team of Google researchers and engineers —
at first one or two, then three or four, and finally more than a hundred — made
considerable progress in that direction. It’s an uncommon story in many ways, not least
of all because it defies many of the Silicon Valley stereotypes we’ve grown accustomed
to. It does not feature people who think that everything will be unrecognizably different
tomorrow or the next day because of some restless tinkerer in his garage. It is neither a
story about people who think technology will solve all our problems nor one about
people who think technology is ineluctably bound to create apocalyptic new ones. It is
not about disruption, at least not in the way that word tends to be used.

It is, in fact, three overlapping stories that converge in Google Translate’s successful
metamorphosis to A.I. — a technical story, an institutional story and a story about the
evolution of ideas. The technical story is about one team on one product at one
company, and the process by which they refined, tested and introduced a brand-new




version of an old product in only about a quarter of the time anyone, themselves
included, might reasonably have expected. The institutional story is about the
employees of a small but influential artificial-intelligence group within that company,
and the process by which their intuitive faith in some old, unproven and broadly
unpalatable notions about computing upended every other company within a large
radius. The story of ideas is about the cognitive scientists, psychologists and wayward
engineers who long toiled in obscurity, and the process by which their ostensibly
irrational convictions ultimately inspired a paradigm shift in our understanding not only
of technology but also, in theory, of consciousness itself.

The first story, the story of Google Translate, takes place in Mountain View over nine
months, and it explains the transformation of machine translation. The second story,
the story of Google Brain and its many competitors, takes place in Silicon Valley over
five years, and it explains the transformation of that entire community. The third story,
the story of deep learning, takes place in a variety of far-flung laboratories — in
Scotland, Switzerland, Japan and most of all Canada — over seven decades, and it might
very well contribute to the revision of our self-image as first and foremost beings who

think.

All three are stories about artificial intelligence. The seven-decade story is about what
we might conceivably expect or want from it. The five-year story is about what it might
do in the near future. The nine-month story is about what it can do right this minute.
These three stories are themselves just proof of concept. All of this is only the beginning.

Part I: Learning Machine

1. The Birth of Brain

Jeff Dean, though his title is senior fellow, is the de facto head of Google Brain. Dean is a
sinewy, energy-efficient man with a long, narrow face, deep-set eyes and an earnest,
soapbox-derby sort of enthusiasm. The son of a medical anthropologist and a public-
health epidemiologist, Dean grew up all over the world — Minnesota, Hawaii, Boston,
Arkansas, Geneva, Uganda, Somalia, Atlanta — and, while in high school and college,
wrote software used by the World Health Organization. He has been with Google since
1999, as employee 25ish, and has had a hand in the core software systems beneath
nearly every significant undertaking since then. A beloved artifact of company culture

is Jeff Dean Facts, written in the style of the Chuck Norris Facts meme: “Jeff Dean’s PIN
is the last four digits of pi.” “When Alexander Graham Bell invented the telephone, he
saw a missed call from Jeff Dean.” “Jeff Dean got promoted to Level 11 in a system
where the maximum level is 10.” (This last one is, in fact, true.)




The Google engineer and Google Brain leader Jeff Dean. CreditBrian Finke for The New York Times

One day in early 2011, Dean walked into one of the Google campus’s “microkitchens” —
the “Googley” word for the shared break spaces on most floors of the Mountain View
complex’s buildings — and ran into Andrew Ng, a young Stanford computer-science
professor who was working for the company as a consultant. Ng told him about Project
Marvin, an internal effort (named after the celebrated A.I. pioneer Marvin Minsky) he
had recently helped establish to experiment with “neural networks,” pliant digital
lattices based loosely on the architecture of the brain. Dean himself had worked on a
primitive version of the technology as an undergraduate at the University of Minnesota
in 1990, during one of the method’s brief windows of mainstream acceptability. Now,
over the previous five years, the number of academics working on neural networks had
begun to grow again, from a handful to a few dozen. Ng told Dean that Project Marvin,



which was being underwritten by Google’s secretive X lab, had already achieved some
promising results.

Dean was intrigued enough to lend his “20 percent” — the portion of work hours every
Google employee is expected to contribute to programs outside his or her core job — to
the project. Pretty soon, he suggested to Ng that they bring in another colleague with a
neuroscience background, Greg Corrado. (In graduate school, Corrado was taught
briefly about the technology, but strictly as a historical curiosity. “It was good I was
paying attention in class that day,” he joked to me.) In late spring they brought in one of
Ng’s best graduate students, Quoc Le, as the project’s first intern. By then, a number of
the Google engineers had taken to referring to Project Marvin by another name: Google
Brain.

Since the term “artificial intelligence” was first coined, at a kind of constitutional
convention of the mind at Dartmouth in the summer of 1956, a majority of researchers
have long thought the best approach to creating A.I. would be to write a very big,
comprehensive program that laid out both the rules of logical reasoning and sufficient
knowledge of the world. If you wanted to translate from English to Japanese, for
example, you would program into the computer all of the grammatical rules of English,
and then the entirety of definitions contained in the Oxford English Dictionary,

and then all of the grammatical rules of Japanese, as well as all of the words in the
Japanese dictionary, and only after all of that feed it a sentence in a source language
and ask it to tabulate a corresponding sentence in the target language. You would give
the machine a language map that was, as Borges would have had it, the size of the
territory. This perspective is usually called “symbolic A.I.” — because its definition of
cognition is based on symbolic logic — or, disparagingly, “good old-fashioned A.I.”

There are two main problems with the old-fashioned approach. The first is that it’s
awfully time-consuming on the human end. The second is that it only really works in
domains where rules and definitions are very clear: in mathematics, for example, or
chess. Translation, however, is an example of a field where this approach fails horribly,
because words cannot be reduced to their dictionary definitions, and because languages
tend to have as many exceptions as they have rules. More often than not, a system like
this is liable to translate “minister of agriculture” as “priest of farming.” Still, for math
and chess it worked great, and the proponents of symbolic A.I. took it for granted that
no activities signaled “general intelligence” better than math and chess.

<iframe width="570" height="315" src="https://www.youtube.com/embed/aygSMgK3BEM"
frameborder="0" allowfullscreen></iframe>

An excerpt of a 1961 documentary emphasizing the longstanding premise of artificial-
intelligence research: If you could program a computer to mimic higher-order cognitive tasks
like math or chess, you were on a path that would eventually lead to something akin to
consciousness.Video posted on YouTube by Roberto Pieraccini

There were, however, limits to what this system could do. In the 1980s, a robotics
researcher at Carnegie Mellon pointed out that it was easy to get computers to do adult
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things but nearly impossible to get them to do things a 1-year-old could do, like hold a
ball or identify a cat. By the 1990s, despite punishing advancements in computer chess,
we still weren’t remotely close to artificial general intelligence.

There has always been another vision for A.I. — a dissenting view — in which the
computers would learn from the ground up (from data) rather than from the top down
(from rules). This notion dates to the early 1940s, when it occurred to researchers that
the best model for flexible automated intelligence was the brain itself. A brain, after all,
is just a bunch of widgets, called neurons, that either pass along an electrical charge to
their neighbors or don’t. What’s important are less the individual neurons themselves
than the manifold connections among them. This structure, in its simplicity, has
afforded the brain a wealth of adaptive advantages. The brain can operate in
circumstances in which information is poor or missing; it can withstand significant
damage without total loss of control; it can store a huge amount of knowledge in a very
efficient way; it can isolate distinct patterns but retain the messiness necessary to
handle ambiguity.

There was no reason you couldn’t try to mimic this structure in electronic form, and in
1943 it was shown that arrangements of simple artificial neurons could carry out basic
logical functions. They could also, at least in theory, learn the way we do. With life
experience, depending on a particular person’s trials and errors, the synaptic
connections among pairs of neurons get stronger or weaker. An artificial neural network
could do something similar, by gradually altering, on a guided trial-and-error basis, the
numerical relationships among artificial neurons. It wouldn’t need to be
preprogrammed with fixed rules. It would, instead, rewire itself to reflect patterns in the
data it absorbed.

This attitude toward artificial intelligence was evolutionary rather than creationist. If
you wanted a flexible mechanism, you wanted one that could adapt to its environment.
If you wanted something that could adapt, you didn’t want to begin with the
indoctrination of the rules of chess. You wanted to begin with very basic abilities —
sensory perception and motor control — in the hope that advanced skills would emerge
organically. Humans don’t learn to understand language by memorizing dictionaries
and grammar books, so why should we possibly expect our computers to do so?

Google Brain was the first major commercial institution to invest in the possibilities
embodied by this way of thinking about A.I. Dean, Corrado and Ng began their work as a
part-time, collaborative experiment, but they made immediate progress. They took
architectural inspiration for their models from recent theoretical outlines — as well as
ideas that had been on the shelf since the 1980s and 1990s — and drew upon both the
company’s peerless reserves of data and its massive computing infrastructure. They
instructed the networks on enormous banks of “labeled” data — speech files with correct
transcriptions, for example — and the computers improved their responses to better
match reality.

“The portion of evolution in which animals developed eyes was a big development,”
Dean told me one day, with customary understatement. We were sitting, as usual, in a
whiteboarded meeting room, on which he had drawn a crowded, snaking timeline of
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Google Brain and its relation to inflection points in the recent history of neural
networks. “Now computers have eyes. We can build them around the capabilities that
now exist to understand photos. Robots will be drastically transformed. They’ll be able
to operate in an unknown environment, on much different problems.” These capacities
they were building may have seemed primitive, but their implications were profound.

Geoffrey Hinton, whose ideas helped lay the foundation for the neural-network approach to Google
Translate, at Google’s offices in Toronto. CreditBrian Finke for The New York Times




12

2. The Unlikely Intern

In its first year or so of existence, Brain’s experiments in the development of a machine
with the talents of a 1-year-old had, as Dean said, worked to great effect. Its speech-
recognition team swapped out part of their old system for a neural network and
encountered, in pretty much one fell swoop, the best quality improvements anyone had
seen in 20 years. Their system’s object-recognition abilities improved by an order of
magnitude. This was not because Brain’s personnel had generated a sheaf of outrageous
new ideas in just a year. It was because Google had finally devoted the resources — in
computers and, increasingly, personnel — to fill in outlines that had been around for a
long time.

A great preponderance of these extant and neglected notions had been proposed or
refined by a peripatetic English polymath named Geoffrey Hinton. In the second year of
Brain’s existence, Hinton was recruited to Brain as Andrew Ng left. (Ng now leads the
1,300-person A.L. team at Baidu.) Hinton wanted to leave his post at the University of
Toronto for only three months, so for arcane contractual reasons he had to be hired as
an intern. At intern training, the orientation leader would say something like, “Type in
your LDAP” — a user login — and he would flag a helper to ask, “What’s an LDAP?” All
the smart 25-year-olds in attendance, who had only ever known deep learning as the
sine qua non of artificial intelligence, snickered: “Who is that old guy? Why doesn’t he
get it?”

“At lunchtime,” Hinton said, “someone in the queue yelled: ‘Professor Hinton! I took
your course! What are you doing here?’ After that, it was all right.”

A few months later, Hinton and two of his students demonstrated truly astonishing
gains in a big image-recognition contest, run by an open-source collective called
ImageNet, that asks computers not only to identify a monkey but also to distinguish
between spider monkeys and howler monkeys, and among God knows how many
different breeds of cat. Google soon approached Hinton and his students with an offer.
They accepted. “I thought they were interested in our I.P.,” he said. “Turns out they were
interested in us.”

Hinton comes from one of those old British families emblazoned like the Darwins at
eccentric angles across the intellectual landscape, where regardless of titular
preoccupation a person is expected to make sideline contributions to minor problems in
astronomy or fluid dynamics. His great-great-grandfather was George Boole, whose
foundational work in symbolic logic underpins the computer; another great-great-
grandfather was a celebrated surgeon, his father a venturesome entomologist, his
father’s cousin a Los Alamos researcher; the list goes on. He trained at Cambridge and
Edinburgh, then taught at Carnegie Mellon before he ended up at Toronto, where he still
spends half his time. (His work has long been supported by the largess of the Canadian
government.) I visited him in his office at Google there. He has tousled yellowed-pewter
hair combed forward in a mature Noel Gallagher style and wore a baggy striped dress
shirt that persisted in coming untucked, and oval eyeglasses that slid down to the tip of a
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prominent nose. He speaks with a driving if shambolic wit, and says things like,
“Computers will understand sarcasm before Americans do.”

Hinton had been working on neural networks since his undergraduate days at
Cambridge in the late 1960s, and he is seen as the intellectual primogenitor of the
contemporary field. For most of that time, whenever he spoke about machine learning,
people looked at him as though he were talking about the Ptolemaic spheres or
bloodletting by leeches. Neural networks were taken as a disproven folly, largely on the
basis of one overhyped project: the Perceptron, an artificial neural network that Frank
Rosenblatt, a Cornell psychologist, developed in the late 1950s. The New York Times
reported that the machine’s sponsor, the United States Navy, expected it would “be able
to walk, talk, see, write, reproduce itself and be conscious of its existence.” It went on to
do approximately none of those things. Marvin Minsky, the dean of artificial intelligence
in America, had worked on neural networks for his 1954 Princeton thesis, but he’d since
grown tired of the inflated claims that Rosenblatt — who was a contemporary at Bronx
Science — made for the neural paradigm. (He was also competing for Defense
Department funding.) Along with an M.L.T. colleague, Minsky published a book that
proved that there were painfully simple problems the Perceptron could never solve.

Minsky’s criticism of the Perceptron extended only to networks of one “layer,” i.e., one
layer of artificial neurons between what’s fed to the machine and what you expect from
it — and later in life, he expounded ideas very similar to contemporary deep learning.
But Hinton already knew at the time that complex tasks could be carried out if you had
recourse to multiple layers. The simplest description of a neural network is that it’s a
machine that makes classifications or predictions based on its ability to discover
patterns in data. With one layer, you could find only simple patterns; with more than
one, you could look for patterns of patterns. Take the case of image recognition, which
tends to rely on a contraption called a “convolutional neural net.” (These were
elaborated in a seminal 1998 paper whose lead author, a Frenchman named Yann
LeCun, did his postdoctoral research in Toronto under Hinton and now directs a huge
A.I. endeavor at Facebook.) The first layer of the network learns to identify the very
basic visual trope of an “edge,” meaning a nothing (an off-pixel) followed by

a something (an on-pixel) or vice versa. Each successive layer of the network looks for a
pattern in the previous layer. A pattern of edges might be a circle or a rectangle. A
pattern of circles or rectangles might be a face. And so on. This more or less parallels the
way information is put together in increasingly abstract ways as it travels from the
photoreceptors in the retina back and up through the visual cortex. At each conceptual
step, detail that isn’t immediately relevant is thrown away. If several edges and circles
come together to make a face, you don’t care exactly where the face is found in the visual
field; you just care that it’s a face.

<iframe width="570" height="315" src="https://www.youtube.com/embed/FwFduRA_L6Q"

frameborder="0" allowfullscreen></iframe>

A demonstration from 1993 showing an early version of the researcher Yann LeCun's convolutional
neural network, which by the late 1990s was processing 10 to 20 percent of all checks in the United
States. A similar technology now drives most state-of-the-art image-recognition systems. Video posted
on YouTube by Yann LeCun




14

The issue with multilayered, “deep” neural networks was that the trial-and-error part
got extraordinarily complicated. In a single layer, it’s easy. Imagine that you're playing
with a child. You tell the child, “Pick up the green ball and put it into Box A.” The child
picks up a green ball and puts it into Box B. You say, “Try again to put the green ball in
Box A.” The child tries Box A. Bravo.

Now imagine you tell the child, “Pick up a green ball, go through the door marked 3 and
put the green ball into Box A.” The child takes a red ball, goes through the door marked
2 and puts the red ball into Box B. How do you begin to correct the child? You cannot
just repeat your initial instructions, because the child does not know at which point he
went wrong. In real life, you might start by holding up the red ball and the green ball
and saying, “Red ball, green ball.” The whole point of machine learning, however, is to
avoid that kind of explicit mentoring. Hinton and a few others went on to invent a
solution (or rather, reinvent an older one) to this layered-error problem, over the halting
course of the late 1970s and 1980s, and interest among computer scientists in neural
networks was briefly revived. “People got very excited about it,” he said. “But we
oversold it.” Computer scientists quickly went back to thinking that people like Hinton
were weirdos and mystics.

These ideas remained popular, however, among philosophers and psychologists, who
called it “connectionism” or “parallel distributed processing.” “This idea,” Hinton told
me, “of a few people keeping a torch burning, it’s a nice myth. It was true within
artificial intelligence. But within psychology lots of people believed in the approach but
just couldn’t do it.” Neither could Hinton, despite the generosity of the Canadian
government. “There just wasn’t enough computer power or enough data. People on our
side kept saying, ‘Yeah, but if I had a really big one, it would work.’ It wasn’t a very
persuasive argument.”

3. A Deep Explanation of Deep Learning

When Pichai said that Google would henceforth be “A.I. first,” he was not just making a
claim about his company’s business strategy; he was throwing in his company’s lot with
this long-unworkable idea. Pichai’s allocation of resources ensured that people like Dean
could ensure that people like Hinton would have, at long last, enough computers and
enough data to make a persuasive argument. An average brain has something on the
order of 100 billion neurons. Each neuron is connected to up to 10,000 other neurons,
which means that the number of synapses is between 100 trillion and 1,000 trillion. For
a simple artificial neural network of the sort proposed in the 1940s, the attempt to even
try to replicate this was unimaginable. We're still far from the construction of a network
of that size, but Google Brain’s investment allowed for the creation of artificial neural
networks comparable to the brains of mice.
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To understand why scale is so important, however, you have to start to understand some
of the more technical details of what, exactly, machine intelligences are doing with the
data they consume. A lot of our ambient fears about A.I. rest on the idea that they’re just
vacuuming up knowledge like a sociopathic prodigy in a library, and that an artificial
intelligence constructed to make paper clips might someday decide to treat humans like
ants or lettuce. This just isn’t how they work. All they’re doing is shuffling information
around in search of commonalities — basic patterns, at first, and then more complex
ones — and for the moment, at least, the greatest danger is that the information we’re
feeding them is biased in the first place.

If that brief explanation seems sufficiently reassuring, the reassured nontechnical reader
is invited to skip forward to the next section, which is about cats. If not, then read on.
(This section is also, luckily, about cats.)

Imagine you want to program a cat-recognizer on the old symbolic-A.I. model. You stay
up for days preloading the machine with an exhaustive, explicit definition of “cat.” You
tell it that a cat has four legs and pointy ears and whiskers and a tail, and so on. All this
information is stored in a special place in memory called Cat. Now you show it a picture.
First, the machine has to separate out the various distinct elements of the image. Then it
has to take these elements and apply the rules stored in its memory. If(legs=4) and
if(ears=pointy) and if(whiskers=yes) and if(tail=yes) and if(expression=supercilious),
then(cat=yes). But what if you showed this cat-recognizer a Scottish Fold, a heart-
rending breed with a prized genetic defect that leads to droopy doubled-over ears? Our
symbolic A.I. gets to (ears=pointy) and shakes its head solemnly, “Not cat.” It is
hyperliteral, or “brittle.” Even the thickest toddler shows much greater inferential
acuity.

Now imagine that instead of hard-wiring the machine with a set of rules for
classification stored in one location of the computer’s memory, you try the same thing
on a neural network. There is no special place that can hold the definition of “cat.” There
is just a giant blob of interconnected switches, like forks in a path. On one side of the
blob, you present the inputs (the pictures); on the other side, you present the
corresponding outputs (the labels). Then you just tell it to work out for itself, via the
individual calibration of all of these interconnected switches, whatever path the data
should take so that the inputs are mapped to the correct outputs. The training is the
process by which a labyrinthine series of elaborate tunnels are excavated through the
blob, tunnels that connect any given input to its proper output. The more training data
you have, the greater the number and intricacy of the tunnels that can be dug. Once the
training is complete, the middle of the blob has enough tunnels that it can make reliable
predictions about how to handle data it has never seen before. This is called “supervised
learning.”

The reason that the network requires so many neurons and so much data is that it
functions, in a way, like a sort of giant machine democracy. Imagine you want to train a
computer to differentiate among five different items. Your network is made up of
millions and millions of neuronal “voters,” each of whom has been given five different
cards: one for cat, one for dog, one for spider monkey, one for spoon and one for
defibrillator. You show your electorate a photo and ask, “Is this a cat, a dog, a spider
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monkey, a spoon or a defibrillator?” All the neurons that voted the same way collect in
groups, and the network foreman peers down from above and identifies the majority
classification: “A dog?”

You say: “No, maestro, it’s a cat. Try again.”

Now the network foreman goes back to identify which voters threw their weight behind
“cat” and which didn’t. The ones that got “cat” right get their votes counted double next
time — at least when they’re voting for “cat.” They have to prove independently whether
they’re also good at picking out dogs and defibrillators, but one thing that makes a
neural network so flexible is that each individual unit can contribute differently to
different desired outcomes. What’s important is not the individual vote, exactly, but the
pattern of votes. If Joe, Frank and Mary all vote together, it’s a dog; but if Joe, Kate and
Jessica vote together, it’s a cat; and if Kate, Jessica and Frank vote together, it’s a
defibrillator. The neural network just needs to register enough of a regularly discernible
signal somewhere to say, “Odds are, this particular arrangement of pixels represents
something these humans keep calling ‘cats.”” The more “voters” you have, and the more
times you make them vote, the more keenly the network can register even very weak
signals. If you have only Joe, Frank and Mary, you can maybe use them only to
differentiate among a cat, a dog and a defibrillator. If you have millions of different
voters that can associate in billions of different ways, you can learn to classify data with
incredible granularity. Your trained voter assembly will be able to look at an unlabeled
picture and identify it more or less accurately.

Part of the reason there was so much resistance to these ideas in computer-science
departments is that because the output is just a prediction based on patterns of patterns,
it’s not going to be perfect, and the machine will never be able to define for you what,
exactly, a cat is. It just knows them when it sees them. This wooliness, however, is the
point. The neuronal “voters” will recognize a happy cat dozing in the sun and an angry
cat glaring out from the shadows of an untidy litter box, as long as they have been
exposed to millions of diverse cat scenes. You just need lots and lots of the voters — in
order to make sure that some part of your network picks up on even very weak
regularities, on Scottish Folds with droopy ears, for example — and enough labeled data
to make sure your network has seen the widest possible variance in phenomena.

It is important to note, however, that the fact that neural networks are probabilistic in
nature means that they’re not suitable for all tasks. It’s no great tragedy if they mislabel
1 percent of cats as dogs, or send you to the wrong movie on occasion, but in something
like a self-driving car we all want greater assurances. This isn’t the only caveat.
Supervised learning is a trial-and-error process based on labeled data. The machines
might be doing the learning, but there remains a strong human element in the initial
categorization of the inputs. If your data had a picture of a man and a woman in suits
that someone had labeled “woman with her boss,” that relationship would be encoded
into all future pattern recognition. Labeled data is thus fallible the way that human
labelers are fallible. If a machine was asked to identify creditworthy candidates for
loans, it might use data like felony convictions, but if felony convictions were unfair in
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the first place — if they were based on, say, discriminatory drug laws — then the loan
recommendations would perforce also be fallible.

Image-recognition networks like our cat-identifier are only one of many varieties of
deep learning, but they are disproportionately invoked as teaching examples because
each layer does something at least vaguely recognizable to humans — picking out edges
first, then circles, then faces. This means there’s a safeguard against error. For instance,
an early oddity in Google’s image-recognition software meant that it could not always
identify a barbell in isolation, even though the team had trained it on an image set that
included a lot of exercise categories. A visualization tool showed them the machine had
learned not the concept of “dumbbell” but the concept of “dumbbell+arm,” because all
the dumbbells in the training set were attached to arms. They threw into the training
mix some photos of solo barbells. The problem was solved. Not everything is so easy.

4. The Cat Paper

Over the course of its first year or two, Brain’s efforts to cultivate in machines the skills
of a 1-year-old were auspicious enough that the team was graduated out of the X lab and
into the broader research organization. (The head of Google X once noted that Brain had
paid for the entirety of X’s costs.) They still had fewer than 10 people and only a vague
sense for what might ultimately come of it all. But even then they were thinking ahead to
what ought to happen next. First a human mind learns to recognize a ball and rests
easily with the accomplishment for a moment, but sooner or later, it wants to ask for the
ball. And then it wades into language.

The first step in that direction was the cat paper, which made Brain famous.

What the cat paper demonstrated was that a neural network with more than a billion
“synaptic” connections — a hundred times larger than any publicized neural network to
that point, yet still many orders of magnitude smaller than our brains — could observe
raw, unlabeled data and pick out for itself a high-order human concept. The Brain
researchers had shown the network millions of still frames from YouTube videos, and
out of the welter of the pure sensorium the network had isolated a stable pattern any
toddler or chipmunk would recognize without a moment’s hesitation as the face of a cat.
The machine had not been programmed with the foreknowledge of a cat; it reached
directly into the world and seized the idea for itself. (The researchers discovered this
with the neural-network equivalent of something like an M.R.I., which showed them
that a ghostly cat face caused the artificial neurons to “vote” with the greatest collective
enthusiasm.) Most machine learning to that point had been limited by the quantities of
labeled data. The cat paper showed that machines could also deal with

raw unlabeled data, perhaps even data of which humans had no established
foreknowledge. This seemed like a major advance not only in cat-recognition studies but
also in overall artificial intelligence.
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The lead author on the cat paper was Quoc Le. Le is short and willowy and soft-spoken,
with a quick, enigmatic smile and shiny black penny loafers. He grew up outside Hue,
Vietnam. His parents were rice farmers, and he did not have electricity at home. His
mathematical abilities were obvious from an early age, and he was sent to study at a
magnet school for science. In the late 1990s, while still in school, he tried to build a
chatbot to talk to. He thought, How hard could this be?

“But actually,” he told me in a whispery deadpan, “it’s very hard.”

He left the rice paddies on a scholarship to a university in Canberra, Australia, where he
worked on A.I. tasks like computer vision. The dominant method of the time, which
involved feeding the machine definitions for things like edges, felt to him like cheating.
Le didn’t know then, or knew only dimly, that there were at least a few dozen computer
scientists elsewhere in the world who couldn’t help imagining, as he did, that machines
could learn from scratch. In 2006, Le took a position at the Max Planck Institute for
Biological Cybernetics in the medieval German university town of Tiibingen. In a
reading group there, he encountered two new papers by Geoffrey Hinton. People who
entered the discipline during the long diaspora all have conversion stories, and when Le
read those papers, he felt the scales fall away from his eyes.

“There was a big debate,” he told me. “A very big debate.” We were in a small interior
conference room, a narrow, high-ceilinged space outfitted with only a small table and
two whiteboards. He looked to the curve he’d drawn on the whiteboard behind him and
back again, then softly confided, “I've never seen such a big debate.”

He remembers standing up at the reading group and saying, “This is the future.” It was,
he said, an “unpopular decision at the time.” A former adviser from Australia, with
whom he had stayed close, couldn’t quite understand Le’s decision. “Why are you doing
this?” he asked Le in an email.

“I didn’t have a good answer back then,” Le said. “I was just curious. There was a
successful paradigm, but to be honest I was just curious about the new paradigm. In
2006, there was very little activity.” He went to join Ng at Stanford and began to pursue
Hinton’s ideas. “By the end of 2010, I was pretty convinced something was going to
happen.”

What happened, soon afterward, was that Le went to Brain as its first intern, where he
carried on with his dissertation work — an extension of which ultimately became the cat
paper. On a simple level, Le wanted to see if the computer could be trained to identify on
its own the information that was absolutely essential to a given image. He fed the neural
network a still he had taken from YouTube. He then told the neural network to throw
away some of the information contained in the image, though he didn’t specify what it
should or shouldn’t throw away. The machine threw away some of the information,
initially at random. Then he said: “Just kidding! Now recreate the initial image you were
shown based only on the information you retained.” It was as if he were asking the
machine to find a way to “summarize” the image, and then expand back to the original
from the summary. If the summary was based on irrelevant data — like the color of the
sky rather than the presence of whiskers — the machine couldn’t perform a competent
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reconstruction. Its reaction would be akin to that of a distant ancestor whose takeaway
from his brief exposure to saber-tooth tigers was that they made a restful swooshing
sound when they moved. Le’s neural network, unlike that ancestor, got to try again, and
again and again and again. Each time it mathematically “chose” to prioritize different
pieces of information and performed incrementally better. A neural network, however,
was a black box. It divined patterns, but the patterns it identified didn’t always make
intuitive sense to a human observer. The same network that hit on our concept of cat
also became enthusiastic about a pattern that looked like some sort of furniture-animal
compound, like a cross between an ottoman and a goat.

Le didn’t see himself in those heady cat years as a language guy, but he felt an urge to
connect the dots to his early chatbot. After the cat paper, he realized that if you could
ask a network to summarize a photo, you could perhaps also ask it to summarize a
sentence. This problem preoccupied Le, along with a Brain colleague named Tomas
Mikolov, for the next two years.

In that time, the Brain team outgrew several offices around him. For a while they were
on a floor they shared with executives. They got an email at one point from the
administrator asking that they please stop allowing people to sleep on the couch in front
of Larry Page and Sergey Brin’s suite. It unsettled incoming V.I.P.s. They were then
allocated part of a research building across the street, where their exchanges in the
microkitchen wouldn’t be squandered on polite chitchat with the suits. That interim also
saw dedicated attempts on the part of Google’s competitors to catch up. (As Le told me
about his close collaboration with Tomas Mikolov, he kept repeating Mikolov’s name
over and over, in an incantatory way that sounded poignant. Le had never seemed so
solemn. I finally couldn’t help myself and began to ask, “Is he ... ?” Le nodded. “At
Facebook,” he replied.)
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Members of the Google Brain team in 2012, after their famous “cat paper” demonstrated the ability of
neural networks to analyze unlabeled data. When shown millions of still frames from YouTube, a
network isolated a pattern resembling the face of a cat. CreditGoogle

They spent this period trying to come up with neural-network architectures that
could accommodate not only simple photo classifications, which were static, but
also complex structures that unfolded over time, like language or music. Many of
these were first proposed in the 1990s, and Le and his colleagues went back to
those long-ignored contributions to see what they could glean. They knew that
once you established a facility with basic linguistic prediction, you could then go
on to do all sorts of other intelligent things — like predict a suitable reply to an
email, for example, or predict the flow of a sensible conversation. You could sidle
up to the sort of prowess that would, from the outside at least, look a lot like
thinking.
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Part II: Language Machine

5. The Linguistic Turn

The hundred or so current members of Brain — it often feels less like a department
within a colossal corporate hierarchy than it does a club or a scholastic society or an
intergalactic cantina — came in the intervening years to count among the freest and
most widely admired employees in the entire Google organization. They are now
quartered in a tiered two-story eggshell building, with large windows tinted a menacing
charcoal gray, on the leafy northwestern fringe of the company’s main Mountain View
campus. Their microkitchen has a foosball table I never saw used; a Rock Band setup I
never saw used; and a Go kit I saw used on a few occasions. (I did once see a young
Brain research associate introducing his colleagues to ripe jackfruit, carving up the
enormous spiky orb like a turkey.)

When I began spending time at Brain’s offices, in June, there were some rows of empty
desks, but most of them were labeled with Post-it notes that said things like “Jesse,
6/27.” Now those are all occupied. When I first visited, parking was not an issue. The
closest spaces were those reserved for expectant mothers or Teslas, but there was ample
space in the rest of the lot. By October, if I showed up later than 9:30, I had to find a
spot across the street.

Brain’s growth made Dean slightly nervous about how the company was going to handle
the demand. He wanted to avoid what at Google is known as a “success disaster” — a
situation in which the company’s capabilities in theory outpaced its ability to implement
a product in practice. At a certain point he did some back-of-the-envelope calculations,
which he presented to the executives one day in a two-slide presentation.

“If everyone in the future speaks to their Android phone for three minutes a day,” he
told them, “this is how many machines we’ll need.” They would need to double or triple
their global computational footprint.

“That,” he observed with a little theatrical gulp and widened eyes, “sounded scary. You'd
have to” — he hesitated to imagine the consequences — “build new buildings.”

There was, however, another option: just design, mass-produce and install in dispersed
data centers a new kind of chip to make everything faster. These chips would be called
T.P.U.s, or “tensor processing units,” and their value proposition — counterintuitively —
is that they are deliberately less precise than normal chips. Rather than compute 12.246
times 54.392, they will give you the perfunctory answer to 12 times 54. On a
mathematical level, rather than a metaphorical one, a neural network is just a structured
series of hundreds or thousands or tens of thousands of matrix multiplications carried
out in succession, and it’s much more important that these processes be fast than that
they be exact. “Normally,” Dean said, “special-purpose hardware is a bad idea. It usually
works to speed up one thing. But because of the generality of neural networks, you can
leverage this special-purpose hardware for a lot of other things.”
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Just as the chip-design process was nearly complete, Le and two colleagues finally
demonstrated that neural networks might be configured to handle the structure of
language. He drew upon an idea, called “word embeddings,” that had been around for
more than 10 years. When you summarize images, you can divine a picture of what each
stage of the summary looks like — an edge, a circle, etc. When you summarize language
in a similar way, you essentially produce multidimensional maps of the distances, based
on common usage, between one word and every single other word in the language. The
machine is not “analyzing” the data the way that we might, with linguistic rules that
identify some of them as nouns and others as verbs. Instead, it is shifting and twisting
and warping the words around in the map. In two dimensions, you cannot make this
map useful. You want, for example, “cat” to be in the rough vicinity of “dog,” but you
also want “cat” to be near “tail” and near “supercilious” and near “meme,” because you
want to try to capture all of the different relationships — both strong and weak — that
the word “cat” has to other words. It can be related to all these other words
simultaneously only if it is related to each of them in a different dimension. You can’t
easily make a 160,000-dimensional map, but it turns out you can represent a language
pretty well in a mere thousand or so dimensions — in other words, a universe in which
each word is designated by a list of a thousand numbers. Le gave me a good-natured
hard time for my continual requests for a mental picture of these maps. “Gideon,” he
would say, with the blunt regular demurral of Bartleby, “I do not generally like trying to
visualize thousand-dimensional vectors in three-dimensional space.”

Still, certain dimensions in the space, it turned out, did seem to represent legible human
categories, like gender or relative size. If you took the thousand numbers that meant
“king” and literally just subtracted the thousand numbers that meant “queen,” you got
the same numerical result as if you subtracted the numbers for “woman” from the
numbers for “man.” And if you took the entire space of the English language and the
entire space of French, you could, at least in theory, train a network to learn how to take
a sentence in one space and propose an equivalent in the other. You just had to give it
millions and millions of English sentences as inputs on one side and their desired
French outputs on the other, and over time it would recognize the relevant patterns in
words the way that an image classifier recognized the relevant patterns in pixels. You
could then give it a sentence in English and ask it to predict the best French analogue.

The major difference between words and pixels, however, is that all of the pixels in an
image are there at once, whereas words appear in a progression over time. You needed a
way for the network to “hold in mind” the progression of a chronological sequence — the
complete pathway from the first word to the last. In a period of about a week, in
September 2014, three papers came out — one by Le and two others by academics

in Canada and Germany — that at last provided all the theoretical tools necessary to do
this sort of thing. That research allowed for open-ended projects like Brain’s Magenta,
an investigation into how machines might generate art and music. It also cleared the
way toward an instrumental task like machine translation. Hinton told me he thought at
the time that this follow-up work would take at least five more years.
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6. The Ambush

Le’s paper showed that neural translation was plausible, but he had used only a
relatively small public data set. (Small for Google, that is — it was actually the biggest
public data set in the world. A decade of the old Translate had gathered production data
that was between a hundred and a thousand times bigger.) More important, Le’s model
didn’t work very well for sentences longer than about seven words.

Mike Schuster, who then was a staff research scientist at Brain, picked up the baton. He
knew that if Google didn’t find a way to scale these theoretical insights up to a
production level, someone else would. The project took him the next two years. “You
think,” Schuster says, “to translate something, you just get the data, run the experiments
and you’re done, but it doesn’t work like that.”

Schuster is a taut, focused, ageless being with a tanned, piston-shaped head, narrow
shoulders, long camo cargo shorts tied below the knee and neon-green Nike Flyknits. He
looks as if he woke up in the lotus position, reached for his small, rimless, elliptical
glasses, accepted calories in the form of a modest portion of preserved acorn and
completed a relaxed desert decathlon on the way to the office; in reality, he told me, it’s
only an 18-mile bike ride each way. Schuster grew up in Duisburg, in the former West
Germany’s blast-furnace district, and studied electrical engineering before moving to
Kyoto to work on early neural networks. In the 1990s, he ran experiments with a neural-
networking machine as big as a conference room; it cost millions of dollars and had to
be trained for weeks to do something you could now do on your desktop in less than an
hour. He published a paper in 1997 that was barely cited for a decade and a half; this
year it has been cited around 150 times. He is not humorless, but he does often wear an
expression of some asperity, which I took as his signature combination of German
restraint and Japanese restraint.

The issues Schuster had to deal with were tangled. For one thing, Le’s code was custom-
written, and it wasn’t compatible with the new open-source machine-learning platform
Google was then developing, TensorFlow. Dean directed to Schuster two other
engineers, Yonghui Wu and Zhifeng Chen, in the fall of 2015. It took them two months
just to replicate Le’s results on the new system. Le was around, but even he couldn’t
always make heads or tails of what they had done.

As Schuster put it, “Some of the stuff was not done in full consciousness. They didn’t
know themselves why they worked.”

This February, Google’s research organization — the loose division of the company,
roughly a thousand employees in all, dedicated to the forward-looking and the
unclassifiable — convened their leads at an offsite retreat at the Westin St. Francis, on
Union Square, a luxury hotel slightly less splendid than Google’s own San Francisco
shop a mile or so to the east. The morning was reserved for rounds of “lightning talks,”
quick updates to cover the research waterfront, and the afternoon was idled away in
cross-departmental “facilitated discussions.” The hope was that the retreat might
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provide an occasion for the unpredictable, oblique, Bell Labs-ish exchanges that kept a
mature company prolific.

At lunchtime, Corrado and Dean paired up in search of Macduff Hughes, director of
Google Translate. Hughes was eating alone, and the two Brain members took positions
at either side. As Corrado put it, “We ambushed him.”

“0.K.,” Corrado said to the wary Hughes, holding his breath for effect. “We have
something to tell you.”

They told Hughes that 2016 seemed like a good time to consider an overhaul of Google
Translate — the code of hundreds of engineers over 10 years — with a neural network.
The old system worked the way all machine translation has worked for about 30 years:
It sequestered each successive sentence fragment, looked up those words in a large
statistically derived vocabulary table, then applied a battery of post-processing rules to
affix proper endings and rearrange it all to make sense. The approach is called “phrase-
based statistical machine translation,” because by the time the system gets to the next
phrase, it doesn’t know what the last one was. This is why Translate’s output sometimes
looked like a shaken bag of fridge magnets. Brain’s replacement would, if it came
together, read and render entire sentences at one draft. It would capture context — and
something akin to meaning.

The stakes may have seemed low: Translate generates minimal revenue, and it probably
always will. For most Anglophone users, even a radical upgrade in the service’s
performance would hardly be hailed as anything more than an expected incremental
bump. But there was a case to be made that human-quality machine translation is not
only a short-term necessity but also a development very likely, in the long term, to prove
transformational. In the immediate future, it’s vital to the company’s business strategy.
Google estimates that 50 percent of the internet is in English, which perhaps 20 percent
of the world’s population speaks. If Google was going to compete in China — where a
majority of market share in search-engine traffic belonged to its competitor Baidu — or
India, decent machine translation would be an indispensable part of the infrastructure.
Baidu itself had published a pathbreaking paper about the possibility of neural machine
translation in July 2015.

And in the more distant, speculative future, machine translation was perhaps the first
step toward a general computational facility with human language. This would represent
a major inflection point — perhaps the major inflection point — in the development of
something that felt like true artificial intelligence.

Most people in Silicon Valley were aware of machine learning as a fast-approaching
horizon, so Hughes had seen this ambush coming. He remained skeptical. A modest,
sturdily built man of early middle age with mussed auburn hair graying at the temples,
Hughes is a classic line engineer, the sort of craftsman who wouldn’t have been out of
place at a drafting table at 1970s Boeing. His jeans pockets often look burdened with
curious tools of ungainly dimension, as if he were porting around measuring tapes or
thermocouples, and unlike many of the younger people who work for him, he has a
wardrobe unreliant on company gear. He knew that various people in various places at
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Google and elsewhere had been trying to make neural translation work — not in a lab
but at production scale — for years, to little avail.

Hughes listened to their case and, at the end, said cautiously that it sounded to him as if
maybe they could pull it off in three years.

Dean thought otherwise. “We can do it by the end of the year, if we put our minds to it.”
One reason people liked and admired Dean so much was that he had a long record of
successfully putting his mind to it. Another was that he wasn’t at all embarrassed to say
sincere things like “if we put our minds to it.”

Hughes was sure the conversion wasn’t going to happen any time soon, but he didn’t
personally care to be the reason. “Let’s prepare for 2016,” he went back and told his
team. “I'm not going to be the one to say Jeff Dean can’t deliver speed.”

A month later, they were finally able to run a side-by-side experiment to compare
Schuster’s new system with Hughes’s old one. Schuster wanted to run it for English-
French, but Hughes advised him to try something else. “English-French,” he said, “is so
good that the improvement won’t be obvious.”

It was a challenge Schuster couldn’t resist. The benchmark metric to evaluate machine
translation is called a BLEU score, which compares a machine translation with an
average of many reliable human translations. At the time, the best BLEU scores for
English-French were in the high 20s. An improvement of one point was considered very
good; an improvement of two was considered outstanding.

The neural system, on the English-French language pair, showed an improvement over
the old system of seven points.

Hughes told Schuster’s team they hadn’t had even half as strong an improvement in
their own system in the last four years.

To be sure this wasn’t some fluke in the metric, they also turned to their pool of human
contractors to do a side-by-side comparison. The user-perception scores, in which
sample sentences were graded from zero to six, showed an average improvement of 0.4
— roughly equivalent to the aggregate gains of the old system over its entire lifetime of
development.
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LA
Google’s Quoc Le (right), whose work demonstrated the plausibility of neural translation, with Mike
Schuster, who helped apply that work to Google Translate. CreditBrian Finke for The New York Times

In mid-March, Hughes sent his team an email. All projects on the old system were to be
suspended immediately.

7. Theory Becomes Product

Until then, the neural-translation team had been only three people — Schuster, Wu and
Chen — but with Hughes’s support, the broader team began to coalesce. They met under
Schuster’s command on Wednesdays at 2 p.m. in a corner room of the Brain building
called Quartz Lake. The meeting was generally attended by a rotating cast of more than



27

a dozen people. When Hughes or Corrado were there, they were usually the only native
English speakers. The engineers spoke Chinese, Vietnamese, Polish, Russian, Arabic,
German and Japanese, though they mostly spoke in their own efficient pidgin and in
math. It is not always totally clear, at Google, who is running a meeting, but in
Schuster’s case there was no ambiguity.

The steps they needed to take, even then, were not wholly clear. “This story is a lot about
uncertainty — uncertainty throughout the whole process,” Schuster told me at one point.
“The software, the data, the hardware, the people. It was like” — he extended his long,
gracile arms, slightly bent at the elbows, from his narrow shoulders — “swimming in a
big sea of mud, and you can only see this far.” He held out his hand eight inches in front
of his chest. “There’s a goal somewhere, and maybe it’s there.”

Most of Google’s conference rooms have videochat monitors, which when idle display
extremely high-resolution oversaturated public Google+ photos of a sylvan dreamscape
or the northern lights or the Reichstag. Schuster gestured toward one of the panels,
which showed a crystalline still of the Washington Monument at night.

“The view from outside is that everyone has binoculars and can see ahead so far.”

The theoretical work to get them to this point had already been painstaking and drawn-
out, but the attempt to turn it into a viable product — the part that academic scientists
might dismiss as “mere” engineering — was no less difficult. For one thing, they needed
to make sure that they were training on good data. Google’s billions of words of training
“reading” were mostly made up of complete sentences of moderate complexity, like the
sort of thing you might find in Hemingway. Some of this is in the public domain: The
original Rosetta Stone of statistical machine translation was millions of pages of the
complete bilingual records of the Canadian Parliament. Much of it, however, was culled
from 10 years of collected data, including human translations that were crowdsourced
from enthusiastic respondents. The team had in their storehouse about 97 million
unique English “words.” But once they removed the emoticons, and the misspellings,
and the redundancies, they had a working vocabulary of only around 160,000.

Then you had to refocus on what users actually wanted to translate, which frequently
had very little to do with reasonable language as it is employed. Many people, Google
had found, don’t look to the service to translate full, complex sentences; they translate
weird little shards of language. If you wanted the network to be able to handle the
stream of user queries, you had to be sure to orient it in that direction. The network was
very sensitive to the data it was trained on. As Hughes put it to me at one point: “The
neural-translation system is learning everything it can. It’s like a toddler. ‘Oh, Daddy
says that word when he’s mad!”” He laughed. “You have to be careful.”

More than anything, though, they needed to make sure that the whole thing was fast and
reliable enough that their users wouldn’t notice. In February, the translation of a 10-
word sentence took 10 seconds. They could never introduce anything that slow. The
Translate team began to conduct latency experiments on a small percentage of users, in
the form of faked delays, to identify tolerance. They found that a translation that took
twice as long, or even five times as long, wouldn’t be registered. An eightfold slowdown
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would. They didn’t need to make sure this was true across all languages. In the case of a
high-traffic language, like French or Chinese, they could countenance virtually no
slowdown. For something more obscure, they knew that users wouldn’t be so scared off
by a slight delay if they were getting better quality. They just wanted to prevent people
from giving up and switching over to some competitor’s service.

Schuster, for his part, admitted he just didn’t know if they ever could make it fast
enough. He remembers a conversation in the microkitchen during which he turned to
Chen and said, “There must be something we don’t know to make it fast enough, but I
don’t know what it could be.”

He did know, though, that they needed more computers — “G.P.U.s,” graphics
processors reconfigured for neural networks — for training.

Hughes went to Schuster to ask what he thought. “Should we ask for a thousand
G.P.U.s?”

Schuster said, “Why not 2,000?”

Ten days later, they had the additional 2,000 processors.

By April, the original lineup of three had become more than 30 people — some of them,
like Le, on the Brain side, and many from Translate. In May, Hughes assigned a kind of
provisional owner to each language pair, and they all checked their results into a big
shared spreadsheet of performance evaluations. At any given time, at least 20 people
were running their own independent weeklong experiments and dealing with whatever
unexpected problems came up. One day a model, for no apparent reason, started taking
all the numbers it came across in a sentence and discarding them. There were months
when it was all touch and go. “People were almost yelling,” Schuster said.

By late spring, the various pieces were coming together. The team introduced something
called a “word-piece model,” a “coverage penalty,” “length normalization.” Each part
improved the results, Schuster says, by maybe a few percentage points, but in aggregate
they had significant effects. Once the model was standardized, it would be only a single
multilingual model that would improve over time, rather than the 150 different models
that Translate currently used. Still, the paradox — that a tool built to further generalize,
via learning machines, the process of automation required such an extraordinary
amount of concerted human ingenuity and effort — was not lost on them. So much of
what they did was just gut. How many neurons per layer did you use? 1,024 or 512? How
many layers? How many sentences did you run through at a time? How long did you
train for?

“We did hundreds of experiments,” Schuster told me, “until we knew that we could stop
the training after one week. You're always saying: When do we stop? How do I know I'm
done? You never know you're done. The machine-learning mechanism is never perfect.
You need to train, and at some point you have to stop. That’s the very painful nature of
this whole system. It’s hard for some people. It’s a little bit an art — where you put your
brush to make it nice. It comes from just doing it. Some people are better, some worse.”



29

By May, the Brain team understood that the only way they were ever going to make the
system fast enough to implement as a product was if they could run it on T.P.U.s, the
special-purpose chips that Dean had called for. As Chen put it: “We did not even know if
the code would work. But we did know that without T.P.U.s, it definitely wasn’t going to
work.” He remembers going to Dean one on one to plead, “Please reserve something for
us.” Dean had reserved them. The T.P.U.s, however, didn’t work right out of the box. Wu
spent two months sitting next to someone from the hardware team in an attempt to
figure out why. They weren’t just debugging the model; they were debugging the chip.
The neural-translation project would be proof of concept for the whole infrastructural
investment.

One Wednesday in June, the meeting in Quartz Lake began with murmurs about a
Baidu paper that had recently appeared on the discipline’s chief online forum. Schuster
brought the room to order. “Yes, Baidu came out with a paper. It feels like someone
looking through our shoulder — similar architecture, similar results.” The company’s
BLEU scores were essentially what Google achieved in its internal tests in February and
March. Le didn’t seem ruffled; his conclusion seemed to be that it was a sign Google was
on the right track. “It is very similar to our system,” he said with quiet approval.

The Google team knew that they could have published their results earlier and perhaps
beaten their competitors, but as Schuster put it: “Launching is more important than
publishing. People say, ‘Oh, I did something first,” but who cares, in the end?”

This did, however, make it imperative that they get their own service out first and better.
Hughes had a fantasy that they wouldn’t even inform their users of the switch. They
would just wait and see if social media lit up with suspicions about the vast
improvements.

“We don’t want to say it’s a new system yet,” he told me at 5:36 p.m. two days after
Labor Day, one minute before they rolled out Chinese-to-English to 10 percent of their
users, without telling anyone. “We want to make sure it works. The ideal is that it’s
exploding on Twitter: ‘Have you seen how awesome Google Translate got?’”

8. A Celebration

The only two reliable measures of time in the seasonless Silicon Valley are the rotations
of seasonal fruit in the microkitchens — from the pluots of midsummer to the Asian
pears and Fuyu persimmons of early fall — and the zigzag of technological progress. On
an almost uncomfortably warm Monday afternoon in late September, the team’s paper
was at last released. It had an almost comical 31 authors. The next day, the members of
Brain and Translate gathered to throw themselves a little celebratory reception in the
Translate microkitchen. The rooms in the Brain building, perhaps in homage to the long
winters of their diaspora, are named after Alaskan locales; the Translate building’s
theme is Hawaiian.
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The Hawaiian microkitchen has a slightly grainy beach photograph on one wall, a small
lei-garlanded thatched-hut service counter with a stuffed parrot at the center and ceiling
fixtures fitted to resemble paper lanterns. Two sparse histograms of bamboo poles line
the sides, like the posts of an ill-defended tropical fort. Beyond the bamboo poles, glass
walls and doors open onto rows of identical gray desks on either side. That morning had
seen the arrival of new hooded sweatshirts to honor 10 years of Translate, and many
team members went over to the party from their desks in their new gear. They were in
part celebrating the fact that their decade of collective work was, as of that day, en route
to retirement. At another institution, these new hoodies might thus have become a
costume of bereavement, but the engineers and computer scientists from both teams all
seemed pleased.

Google’s neural translation was at last working. By the time of the party, the company’s
Chinese-English test had already processed 18 million queries. One engineer on the
Translate team was running around with his phone out, trying to translate entire
sentences from Chinese to English using Baidu’s alternative. He crowed with glee to
anybody who would listen. “If you put in more than two characters at once, it times out!”
(Baidu says this problem has never been reported by users.)

When word began to spread, over the following weeks, that Google had introduced
neural translation for Chinese to English, some people speculated that it was because
that was the only language pair for which the company had decent results. Everybody at
the party knew that the reality of their achievement would be clear in November. By
then, however, many of them would be on to other projects.

Hughes cleared his throat and stepped in front of the tiki bar. He wore a faded green
polo with a rumpled collar, lightly patterned across the midsection with dark bands of
drying sweat. There had been last-minute problems, and then last-last-minute
problems, including a very big measurement error in the paper and a weird
punctuation-related bug in the system. But everything was resolved — or at least
sufficiently resolved for the moment. The guests quieted. Hughes ran efficient and
productive meetings, with a low tolerance for maundering or side conversation, but he
was given pause by the gravity of the occasion. He acknowledged that he was, perhaps,
stretching a metaphor, but it was important to him to underline the fact, he began, that
the neural translation project itself represented a “collaboration between groups that
spoke different languages.”

Their neural-translation project, he continued, represented a “step function forward” —
that is, a discontinuous advance, a vertical leap rather than a smooth curve. The relevant
translation had been not just between the two teams but from theory into reality. He
raised a plastic demi-flute of expensive-looking Champagne.

“To communication,” he said, “and cooperation!”

The engineers assembled looked around at one another and gave themselves over to
little circumspect whoops and applause.
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Jeff Dean stood near the center of the microkitchen, his hands in his pockets, shoulders
hunched slightly inward, with Corrado and Schuster. Dean saw that there was some
diffuse preference that he contribute to the observance of the occasion, and he did so in
a characteristically understated manner, with a light, rapid, concise addendum.

What they had shown, Dean said, was that they could do two major things at once: “Do
the research and get it in front of, I dunno, half a billion people.”

Everyone laughed, not because it was an exaggeration but because it wasn’t.

Epilogue: Machines Without Ghosts

Perhaps the most famous historic critique of artificial intelligence, or the claims made
on its behalf, implicates the question of translation. The Chinese Room argument was
proposed in 1980 by the Berkeley philosopher John Searle. In Searle’s thought
experiment, a monolingual English speaker sits alone in a cell. An unseen jailer passes
him, through a slot in the door, slips of paper marked with Chinese characters. The
prisoner has been given a set of tables and rules in English for the composition of
replies. He becomes so adept with these instructions that his answers are soon
“absolutely indistinguishable from those of Chinese speakers.” Should the unlucky
prisoner be said to “understand” Chinese? Searle thought the answer was obviously not.
This metaphor for a computer, Searle later wrote, exploded the claim that “the
appropriately programmed digital computer with the right inputs and outputs would
thereby have a mind in exactly the sense that human beings have minds.”

For the Google Brain team, though, or for nearly everyone else who works in machine
learning in Silicon Valley, that view is entirely beside the point. This doesn’t mean
they’re just ignoring the philosophical question. It means they have a fundamentally
different view of the mind. Unlike Searle, they don’t assume that “consciousness” is
some special, numinously glowing mental attribute — what the philosopher Gilbert Ryle
called the “ghost in the machine.” They just believe instead that the complex assortment
of skills we call “consciousness” has randomly emerged from the coordinated activity of
many different simple mechanisms. The implication is that our facility with what we
consider the higher registers of thought are no different in kind from what we’re
tempted to perceive as the lower registers. Logical reasoning, on this account, is seen as
a lucky adaptation; so is the ability to throw and catch a ball. Artificial intelligence is not
about building a mind; it’s about the improvement of tools to solve problems. As
Corrado said to me on my very first day at Google, “It’s not about what a machine
‘knows’ or ‘understands’ but what it ‘does,” and — more importantly — what it doesn’t do
yet.”

Where you come down on “knowing” versus “doing” has real cultural and social
implications. At the party, Schuster came over to me to express his frustration with the
paper’s media reception. “Did you see the first press?” he asked me. He paraphrased a
headline from that morning, blocking it word by word with his hand as he recited it:
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GOOGLE SAYS A.I. TRANSLATION IS INDISTINGUISHABLE FROM HUMANS'. Over
the final weeks of the paper’s composition, the team had struggled with this; Schuster
often repeated that the message of the paper was “It’s much better than it was before,
but not as good as humans.” He had hoped it would be clear that their efforts weren’t
about replacing people but helping them.

And yet the rise of machine learning makes it more difficult for us to carve out a special
place for us. If you believe, with Searle, that there is something special about human
“insight,” you can draw a clear line that separates the human from the automated. If you
agree with Searle’s antagonists, you can’t. It is understandable why so many people cling
fast to the former view. At a 2015 M.I.T. conference about the roots of artificial
intelligence, Noam Chomsky was asked what he thought of machine learning. He pooh-
poohed the whole enterprise as mere statistical prediction, a glorified weather forecast.
Even if neural translation attained perfect functionality, it would reveal nothing
profound about the underlying nature of language. It could never tell you if a pronoun
took the dative or the accusative case. This kind of prediction makes for a good tool to
accomplish our ends, but it doesn’t succeed by the standards of furthering our
understanding of why things happen the way they do. A machine can already detect
tumors in medical scans better than human radiologists, but the machine can’t tell you
what’s causing the cancer.

Then again, can the radiologist?

Medical diagnosis is one field most immediately, and perhaps unpredictably, threatened
by machine learning. Radiologists are extensively trained and extremely well paid, and
we think of their skill as one of professional insight — the highest register of thought. In
the past year alone, researchers have shown not only that neural networks can find
tumors in medical images much earlier than their human counterparts but also that
machines can even make such diagnoses from the texts of pathology reports. What
radiologists do turns out to be something much closer to predictive pattern-matching
than logical analysis. They’re not telling you what caused the cancer; they’re just telling
you it’s there.

Once you've built a robust pattern-matching apparatus for one purpose, it can be
tweaked in the service of others. One Translate engineer took a network he put together
to judge artwork and used it to drive an autonomous radio-controlled car. A network
built to recognize a cat can be turned around and trained on CT scans — and on
infinitely more examples than even the best doctor could ever review. A neural network
built to translate could work through millions of pages of documents of legal discovery
in the tiniest fraction of the time it would take the most expensively credentialed lawyer.
The kinds of jobs taken by automatons will no longer be just repetitive tasks that were
once — unfairly, it ought to be emphasized — associated with the supposed lower
intelligence of the uneducated classes. We’re not only talking about three and a half
million truck drivers who may soon lack careers. We’re talking about inventory
managers, economists, financial advisers, real estate agents. What Brain did over nine
months is just one example of how quickly a small group at a large company can
automate a task nobody ever would have associated with machines.
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The most important thing happening in Silicon Valley right now is not disruption.
Rather, it’s institution-building — and the consolidation of power — on a scale and at a
pace that are both probably unprecedented in human history. Brain has interns; it has
residents; it has “ninja” classes to train people in other departments. Everywhere there
are bins of free bike helmets, and free green umbrellas for the two days a year it rains,
and little fruit salads, and nap pods, and shared treadmill desks, and massage chairs,
and random cartons of high-end pastries, and places for baby-clothes donations, and
two-story climbing walls with scheduled instructors, and reading groups and policy talks
and variegated support networks. The recipients of these major investments in human
cultivation — for they’re far more than perks for proles in some digital salt mine — have
at hand the power of complexly coordinated servers distributed across 13 data centers

on four continents, data centers that draw enough electricity to light up large cities.

But even enormous institutions like Google will be subject to this wave of automation;
once machines can learn from human speech, even the comfortable job of the
programmer is threatened. As the party in the tiki bar was winding down, a Translate
engineer brought over his laptop to show Hughes something. The screen swirled and
pulsed with a vivid, kaleidoscopic animation of brightly colored spheres in long looping
orbits that periodically collapsed into nebulae before dispersing once more.

Hughes recognized what it was right away, but I had to look closely before I saw all the
names — of people and files. It was an animation of the history of 10 years of changes to
the Translate code base, every single buzzing and blooming contribution by every last
team member. Hughes reached over gently to skip forward, from 2006 to 2008 to 2015,
stopping every once in a while to pause and remember some distant campaign, some
ancient triumph or catastrophe that now hurried by to be absorbed elsewhere or to burst
on its own. Hughes pointed out how often Jeff Dean’s name expanded here and there in
glowing spheres.

Hughes called over Corrado, and they stood transfixed. To break the spell of
melancholic nostalgia, Corrado, looking a little wounded, looked up and said, “So when
do we get to delete it?”

“Don’t worry about it,” Hughes said. “The new code base is going to grow. Everything
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TOWS.



